# An Efficient Solar Thermal-Powered Evaporation System for Salt Harvesting and Wastewater Treatment

Roland Winston
Professor, Physics and Engineering,
UC Merced
Director, UC Solar

The University of California Advanced Solar Technologies Institute (UC Solar)

\*Research—Innovation—Education\*









# UC Solar in Mongolia



# Project Background

• Wastewater evaporation is a proven method for reducing the water portion of water-based waste streams









# Project Background

- Evaporation systems are widely used by the manufacturing and food processing industries for the treatment of "adverse" wastewater
  - To reduce the water content of waste prior to shipping it for offsite disposal
  - To reduce the water content of reverse osmosis and desalination/distillation waste streams (brine)
  - To recover distilled water (condensate)
  - To reclaim valuable dissolved solids
- However, these systems are energy-intensive and are powered exclusively by fossil fuels



# Project Background

• To substitute solar energy for fossil fuels, evaporation systems require input temperatures in excess of 150°C ("process heat")

• There are commercially-available solar thermal systems that produce these temperatures, but they have significant drawbacks, including:

 Requiring tracking, which reduces system reliability and increases maintenance costs

- Stringent installation requirements
- Don't perform well on hazy or partially cloudy days
- High cost (~\$2,000 per kWt installed)

• With CEC support, researchers at UC Merced have designed, tested and demonstrated the External Compound Parabolic Concentrator (XCPC), a novel non-tracking solar thermal collector for industrial process heat (100°-250°C)



• The XCPC matches the performance and efficiency of tracking solar thermal collectors



- For the past three summers, the XCPC has been powering the UC Merced Solar Cooling Demonstration Project
  - 160 north/south XCPCs
  - 50 sqm aperture area producing 19 kWt at >165°C
  - 6.5-ton Broad doubleeffect absorption chiller
  - Direct solar-powered cooling for six hours per day (plus two hours extended cooling)



### **Evaporation Project Overview**

• This project will combine the XCPC technology with a commercial evaporator to create an efficient solar thermal-powered evaporation system



### **Evaporation Project Overview**

- Funded by the CA Department of Water Resources Prop. 204 Drainage Water Re-use Program
- Demonstrate the ability to directly power a 10 gph capacity thermal evaporator using UC Merced's XCPC technology
- Test the system's effectiveness in processing a variety of Central Valley waste streams, including:
  - Reverse osmosis and desalination/distillation waste streams (brine)
  - Industrial and food processing waste streams
  - Agricultural drainage
- Study the economic and environmental benefits of solarpowered evaporation

# Mongolia -- Initial Testing

















# Al Khaleej Sugar Refinery in Jabel Ali Largest Sugar Refinery in the World





# Steam Generation in Beijing



# Neutrino and Nonimaging Optics



### Deuterium and MSF

#### SUMMARY

Distributions of deuterium in two multi-stage flash plants and a multi-effect plant were calculated by use of a numerical model. The calculated values were in good agreement with the observed ones. The maximum error was less than 1%. Product water of high deuterium concentration can be obtained from the distillation chamber at the highest temperature with a high concentration factor. The deuterium concentration in the product water was around 155 ppm.



Fig. 1. Flow diagram of the MSF test plant (a 39-stage flash evaporator). A: Feed seawater; B: Seawater discharge; C: Decarbonator; D: Degasifier; E: Brine recirculation pump; F: Brine heater; G: Brine discharge; H: Product water; M1-M6: Heat recovery section; M7: Heat rejection section.



• The XCPC uses non-imaging optics to track the sun, while the XCPC hardware remains stationary



#### **Challenges for Brine Evaporation and Salt Harvesting**

- Agricultural drainage and wastewater streams vary in composition
- -- different concentrations of dissolved species, metals, contaminants
- -- recovery value versus disposal costs variable
- Different salts have different solubilities as a function of temperature (T) and pressure (P)
- -- precipitation and dissolution of salts varies with T, P
- -- salts will precipitate at different stages from different water compositions
- -- unwanted precipitation causes scaling and fouling
- Evaporation is more energy intensive as volume of water decreases and concentration of salt increases
- -- Zero-liquid discharge (ZLD) is difficult and expensive to achieve

Need to know the geochemical composition of the water in order to optimize evaporation and harvesting processes



**FIGURE 10.9** Hydrogeochemical classification system for natural waters using the trilinear diagram. from Fetter, C.W. (1994) Applied Hydrogeology

#### **Opportunities for Technology Innovation**

- Different salts have different solubilities as a function of temperature (T) and pressure (P)
- -- use thermodynamic-kinetic-transport modeling to theoretically optimize T and P conditions to control precipitation of specific phases
- -- test theoretical models in pilot-scale experiments to refine model parameters under dynamic conditions
- -- iteratively link theory and experiments
- Agricultural drainage and wastewater streams vary in composition
- -- initial analyses and calculations to identify valuable or problem constituents
- -- real-time monitoring, system optimization, and dynamic feedback
- -- high-purity separation of precipitated salts; minimize solid waste
- Evaporation is energy intensive
- -- solar XCPC evaporator to generate high temperatures
- -- integrated temperature control and system optimization

### Contact Us

For more information, contact: **Roland Winston UC Solar Director** (209) 228-4346 rwinston@ucmerced.edu -Or-Ronald Durbin **Executive Director** (209) 228-4565 rdurbin@ucmerced.edu



• To learn more about the UC Solar Institute, please visit the UC Solar website at: www.UCSolar.org