Comparison Between Two MPC Algorithms for Demand Charge Reduction in a Real-World Microgrid System

UCR Sustainable Integrated Grid Initiative (SIGI)

Yun Xue1,2,3,4, Michael Todd1,2,3,4, Sadrul Ula1,2,3,4, Matthew Barth1,2,4 and Alfredo A. Martinez-Morales1,2,3,4

1Department of Electrical and Computer Engineering
2Southern California Research Initiative for Solar Energy
3Winston Chung Global Energy Center
4College of Engineering Center for Environmental Research and Technology

University of California, Riverside, California 92521

(alfmart@ece.ucr.edu)

Abstract

This paper describes an evaluation between two model predictive control (MPC) algorithms for microgrid energy management combined with solar production and battery energy storage for demand charge reduction in a real-world microgrid system. The first control algorithm is a constant threshold MPC (CT-MPC) that works well on a system with relatively stable solar generation and a well-known building load profile. CT-MPC can maintain the on-peak demand under a certain value during the entire on-peak rate period. The second control algorithm is an adjusting demand threshold MPC (ADT-MPC). ADT-MPC can better deal with unpredictable solar generation and/or changing building loads. The on-peak threshold under this algorithm is adjusted to the optimal value during the on-peak rate period. As expected, the CT-MPC algorithm performs well when coupled with accurate forecast models, while the ADT-MPC algorithm excels when forecasting is more unpredictable.

CT-MPC Algorithm and Experimental Results

1. Principles:
 - Change the BESS when there’s extra solar generation;
 - Calculate maximum average discharge power p and d to ensure that enough remaining battery capacity is available during the entire on-peak period;
 - Solve the optimization problem, and only use the first index of the result as the control demand;
 - A new peak-on-index p_{dis}.

2. Experimental Results

Fig. 4. Solar Generation and Building Load Experiment.

Fig. 5. Battery Operation and SOC Level.

Fig. 6. ADT-MPC Net Load Simulation Under a Cloudy Day on 6/9/2015.

Fig. 7. ADT-MPC Battery Operation and Storage Simulation Under a Cloudy Day on 6/9/2015.

Fig. 8. Net load comparison between ADT-MPC and CT-MPC on a Cloudy Day.

Fig. 9. Battery operation under ADT-MPC on a Cloudy Day.

MPC Principles

MPC models have a prediction horizon M and a control horizon H. The detailed MPC principles can be applied as follows:

i. For each On-Peak rate period in a single day, the time intervals can be divided into M, where

$$M = \text{hours} \times 12 + 6$$

hours refers to the on-peak hours: in summer, 6 (12:00-18:00) and in winter 4 (17:00-21:00).

The duration for each interval is 5 minutes. At electricity demand charges are calculated based on the 5 minutes moving average by the utility company, the battery bank is programmed to start discharging 15 minutes prior to the on-peak rate period start time, and stop discharging 15 minutes past the end time.

ii. Set control horizon H and prediction horizon M, and fetch the prediction model for solar generation and building load p and P_l respectively.

Additionally, fetch the electricity price p_{charge} and set $disRate=0.4$.

Conclusion

From Fig. 8 it can be observed that CT-MPC will use the entire battery capacity to the lowest allowed SOC level (20%) to maintain the constant demand threshold, while the ADT-MPC algorithm adds a threshold of higher value to maintain the battery status between 20% and 30%. The ADТ-MPC was designed to provide the lowest load demand resulting in lower battery SOC. The ADT-MPC algorithm maintains a higher SOC reserve capacity and is likely to be more responsive to changing demand rates and energy fluctuations. The CT-MPC-MP is within control with accurate forecasts, while the ADT-MPC algorithm excels when forecasting is more unpredictable. The ADT-MPC algorithm has a larger area of applicability to a higher variability system, when comprehensive historical energy generation or building load profiles are lacking.