UC Solar Leads in Solar Thermal Science

Prof. Roland Winston

Director, UC Solar & Distinguished Professor
Schools of Natural Sciences & Engineering

October 19th 2018, San Francisco
Summary

• Fundamental limitation for solar concentration
• Solar Thermal Research at UC Solar
 • The Arpa-E project
 • The XCPC project
 • The drum drying project
 • Evaporation Project
 • Mongolia project
 • The CEC combined heat and power project
• The Solar desalination project.
 • Current DOE Desal project
Thermodynamic limit on concentration

- From $\lambda_{\text{max sun}} \sim 0.5 \mu$ we measure $T_{\text{sun}} \sim 6000^\circ (5670^\circ)$

Without actually going to the Sun!

- Then from σT^4 - solar surface flux $\sim 58.6 \text{ W/mm}^2$
 - The solar constant $\sim 1.35 \text{ mW/mm}^2$
 - The second law of thermodynamics
 - $C_{\text{max}} \sim 44,000$
 - Coincidentally, $C_{\text{max}} = 1/\sin^2 \theta$
 - This is evidence of a deep connection to optics
Limits to Concentration

\[
\frac{1}{\sin^2 \theta} \quad \text{Law of Maximum Concentration}
\]

Earth: Sun Example

\[
l_2 = \left(\frac{r_1}{r_2}\right)^2 l_1 \quad \text{Inverse Square Fall-off of Flux (Gauss's Law)}
\]

\[
\sin(\theta) = \frac{r_1}{r_2} \quad \Rightarrow \quad \frac{l_1}{l_2} = \frac{1}{\sin^2 \theta}
\]

\[
C l_2 \leq l_1 \quad (2\text{nd Law of Thermodynamics})
\]

Maximum Concentration \(C = \frac{1}{\sin^2 \theta} = 46,000 \)
The general concentrator problem

Concentration C is defined as A_2/A_3

What is the “best” design?
Characteristics of an optimal concentrator design

1st law efficiency: energy conservation
\[q_{12} = q_{13} \Rightarrow P_{12} = P_{13} \]

2nd law efficiency:
\[A_1 P_{12} = A_1 P_{13}, \text{but } A_1 P_{13} = A_3 P_{31} \]

The concentration ratio C:
\[C = \frac{A_2}{A_3} \]
\[A_3 = \frac{A_1 P_{12}}{P_{31}} \]

The maximum concentration ratio
\[C_{\text{max}} \text{ corresponds to minimum } A_3 \]

C is maximum IFF \(P_{31} = 1 \)

Recall that for maximum thermodynamics efficiency
\[A_1 P_{12} = A_1 P_{13} = A_3 \]

Then \(A_2 P_{21} = A_3 \)
\[C_{\text{max}} = 1/P_{21} \]
A more useful geometry for a parabolic trough thermal concentrator is a tubular receiver.

Concentration relation
\[\frac{\sin \phi}{\pi \sin \theta} \]

Maximum value
\[\frac{1}{(\pi \sin \theta)} \]
at 90° rim angle.

Falls short of the fundamental limit by a factor \(\pi \)!

\[C = \frac{D}{2 \pi r \sin \theta} = \frac{\sin \phi}{\pi \sin \theta} \leq \frac{1}{\pi \sin \theta} \leq \frac{1}{\pi} C_{\text{fund}} \]
Record Breaking Exergy from Sunlight
1. TEAM

University of California, Merced

- Roland Winston, PhD
 - Co-Principal Investigator
 - Professor, Solar Optics

- Lun Jiang, PhD
 - Post-Doc, Hybrid Receiver
 - Project Leader

- Bennett Widyolar
 - Grad Student, Concentrating
 - Experimental System

- Jonathan Ferry
 - Grad Student, Solar Cell Testing

> Jiba Dahal
 - Grad Student, Vacuum System

> Melissa Ricketts
 - Grad Student, Optics
 - Design & Simulation
University of California, Berkeley

1. TEAM

- Eli Yablonovitch, PhD
 - Professor, Solid State Physics

- Gregg Scranton
 - Grad Student, Solar Cell Fabrication
1. TEAM

Gas Technology Institute

- Aleksandr Kozlov, PhD
 - Principle Investigator
 - Thermal Storage, Heat Transfer

- David Cygan
 - Project Management

- Hamid Abbasi
 - Project Management

- Joseph Pondo
 - Thermal System Testing

> Sandeep Alavandi
 - Thermal System Analysis

> Joseph Rabovitser, PhD
 - System Modelling

> Alek Tang
 - T2M, Licensing
Comparison of Nonimaging and conventional at 1:1 scale

- 3X smaller tube area means lower radiative loss at same T
Absorber

\[\cos \phi = \frac{r \theta}{A_2/2} \]

\[\sin \phi = \frac{A_1/2}{r} \]

Primary Concentrator

Secondary Concentrator

Glass Tube

Secondary Aperture

Secondary Reflector

Minichannels

Solar Cells

InGaP Spectral Efficiency

GaAs Spectral Efficiency

Direct Beam ASTM G173 Spectrum

Dual-Junction InGaP/GaAs PV + Thermal Junction

Approaches 59% Solar Conversion with 36% thermal fraction.

41% spectrum

23% spectrum

1000 Wavelength λ (nm)

2000

2500

2/3 Camot @ 608 C
Emissivity Testing of Selective Coatings At Temperature

\[I \times V = A\varepsilon\sigma T_{abs}^4 \]
Coating undergoing 100 hours continuous testing at 650 °C
The graph shows the relationship between thermal efficiency and average particle temperature. The data points are labeled with dates:

- 8/31/2017
- 11/17/2017
- 9/25/2017
- 10/19/2017
- 11/14/2017

The equation of the trend line is given as:

\[y = -6 \times 10^{-7}x^2 + 6 \times 10^{-5}x + 0.6325 \]

The coefficient of determination, \(R^2 \), is 0.867.
Filling the Hopper
Filling the Hopper
At Dirksen Senate Office Bldg aides to Sen Tammy Duckworth 3.14.18
Next Stop USG!
The external compound parabolic concentrators (XCPC)
The XCPC uses non-imaging optics to track the sun, while the XCPC hardware remains stationary.
The XCPC

• With CEC & private donor support, researchers at UC Merced have designed, tested and demonstrated the External Compound Parabolic Concentrator (XCPC), a novel non-tracking solar thermal collector for industrial process heat (100º-250ºC)
Solar Cooling

- 4 year demonstration
- 160 N/S XCPC collectors produce 20 kWth
- Power a 6.5 ton 2e absorption chiller
- Expanded to working IT trailer for 2015 tests
Solar cooling performance (sunny day)
Solar cooling performance (cloudy day)
Drum Drying

- XCPC collectors generate heat to mineral oil heat transfer fluid
 - 100-150 C
- Drum dryer uses steam (100-130 psig) to heat exterior surface of the drums.
- Retrofitted existing steam powered double drum dryer to use direct flow of mineral oil.
Evaporation

- XCPC collectors can provide heat (150 °C) to power commercial evaporators
 - Up to 90% waste stream volume reduction
 - 6-13 GPH evaporation
 - Test using heat transfer oil instead of steam or a natural gas burner
- Test effectiveness in processing valley waste streams:
 - RO discharge
 - Industrial and food processing waste streams
 - Agricultural drainage
Boiler Pre-heating in The UAE

CROSS COMPOUND PARABOLIC CONCENTRATOR

- Produces solar heat up to 250°C
- Uses evacuated absorber tubes to reduce heat losses
- Concentrating design without moving parts
- Developed in partnership with University of California, Merced
- Larger-scale system in operation at Al Khaleej Sugar factory in Jebel Ali

EMSOL
Masdar

A Sustainable Company
XCPC boiler pre-heating at sugar refinery plant in Dubai, UAE
XCPC Steam Generation in Beijing
XCPC Heating in Mongolia
(space, water, cooking, toilet)
Bennett in Ulan Bator
Initial Testing

310 °C

-14 °C
Project Launch
XCPC in Mongolia

UlaanBaatar, Mongolia - 5 kW Fully Off-Grid Space Heating
Solar array outside ger @ BogdKhan Resort, UB – May 2015
A Novel Low-Cost, High-Efficiency Solar Powered Micro-CHP System for Electricity, Hot Water, and Space Heating

• Hybrid PV/T Collector Generates
 • Electricity
 • Hot water (60 °C)

• Operates at same efficiency as solar PV panel and generates solar heat with minimal additional cost
Combined Heat and Power (CHP) for Domestic / Commercial Hot Water

Path of Light Ray in PVT Collector

Transmission (τ)

Absorption (α)

Reflection (ρ)

Glass tube

Solar Cells

Minichannel Heat Pipe Absorber

Reflective coating

Diagram showing the components and path of light rays in a PVT collector.
5 Flow-Through Tube Array

5 Heat-Pipe Tube Array

Illusion produced by flowline optics
Full Flow Through Tube Tests w/ Glass

Flow Through - On Sun Tests

14.07% Efficiency by cell area
11.87% Efficiency by Aperture
MPP @ 6.9 V

17.19% Efficiency by cell area
MPP @ 7 V

11.52% Efficiency by cell area
MPP @ 7.2 V
Topic Area 2: Low-cost solar thermal heat
The Internal Compound Parabolic Concentrator (ICPC)—A Novel Low Cost Solar Thermal Collection System for Desalination Processes

ICPC Collector

Direct-Contact Phase Change Thermal Storage

24/7 Low-Cost Dispatchable Solar Thermal for Desalination
Metal Absorber: Good heat transfer

Vacuum: Reduced heat loss

Metal-Glass Seal: New options for low cost (All aluminum)

Heat Pipe: Low-cost absorber material (aluminum + acetone)
- $7/m^2 aperture
- Thermal “superconductor”
 - Easy to install / replace tubes and remove heat

ICPC Optics / Reflector: $C_x = 1$

ICPC Collector
- Metal-glass Seal
- Integrated Reflector
- Heat Pipe Absorber
- Simple Collector Assembly

Low-cost, High-efficiency, Portability
Collector Efficiency Comparison
(1000 W/m² Global, 150 W/m² Diffuse, T_a = 25 °C)

- Flat Plate Collector (HelioDyne GOBI)
- Evacuated Tube Collector (SunRain)
- Evacuated Tube Collector with CPC Reflector (Linuo Ritter)
- Evacuated Flat Plate (TVP Solar)
- Micro Linear Fresnel (Chromasun MCT)
- Parabolic Trough (NEP Polytrough 180D)
- Internal Compound Parabolic Concentrator (ICPC)

120 °C Working Temperature
Target Solar Collector Operating Range

Thermal Efficiency (\eta)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 25 50 75 100 125 150 175 200
T_m - T_a
Cost reductions

- Glass tube
- Silver reflector coating
- Aluminum minichannel heat pipes
- Low cost metal-glass seal
Thank you